Кип Торн - Интерстеллар: наука за кадром
Рис. 22.2. Трехмерная сфера проходит через двумерную брану
Вы верите в принцип сохранения вещества: никакой объект не может возникнуть из пустоты, но этот – появился. Единственное найденное вами объяснение показано на правой половине рис. 22.2. Трехмерная сущность из балка – сфера – проходит через вашу брану. По мере этого вы наблюдаете в своей бране ее изменяющееся двумерное сечение. Сначала это сечение около «южного полюса» сферы, точка (рис. 22.2 сверху справа). Дойдя до экваториальной плоскости, оно расширяется до окружности максимального диаметра (рис. 22.2 посередине справа). И, наконец, у «северного полюса» оно опять сжимается в точку, после чего исчезает (рис. 22.2 снизу справа).
Представьте, что бы произошло, если бы человек (трехмерная сущность), живущий в трехмерном балке, прошел сквозь вашу двумерную брану. Что бы вы увидели?
Четырехмерные сущности, проходящие сквозь трехмерную брану
Допустим, наша Вселенная, с ее тремя пространственными и одним временным измерением, действительно находится в пятимерном балке (четыре пространственных измерения плюс одно временное). И допустим, есть «гиперсферические сущности», живущие в балке. Каждая такая сущность имела бы центр, а также поверхность, состоящую из всех равноудаленных от центра точек в четырех пространственных измерениях (к примеру, удаленных на 30 сантиметров). Поверхность сущности из балка обладала бы тремя измерениями, а ее внутренний объем – четырьмя.
Пусть эта гиперсферическая сущность из балка, путешествуя по балку в направлении «туда» или «обратно», пройдет через нашу брану. Что мы увидим? Ответ очевиден: мы увидим сферические сечения гиперсферы (рис. 22.3).
Рис. 22.3. Гиперсферическая сущность из балка проходит сквозь нашу брану: вид из браны
Сначала из ниоткуда возникнет точка (1). Она увеличится, став трехмерной сферой (2). Сфера вырастет до максимального диаметра (3), затем сожмется (4), уменьшится до точки (5) и исчезнет. Как вы думаете, что мы увидим, если четырехмерный человек из балка пройдет сквозь нашу брану? Чтобы рассуждать об этом, придется сначала представить себе, как четырехмерный человек – две ноги, туловище, две руки, голова – «должен выглядеть» в балке, в четырех измерениях, и на что будут похожи его сечения.
Природа сущностей из балка и их гравитация
и
Если сущности из балка вообще есть, то из чего они состоят? Определенно не из той же материи с атомным строением, что и мы, – атомы могут существовать лишь в трех пространственных измерениях, а не в четырех. То же можно сказать и о субатомных частицах, и об электрических и магнитных полях (см. главу 2), а также о силах, которые удерживают атомные ядра вместе.
Некоторые выдающиеся физики пытались понять, как ведет себя вещество, а также поля и силы, если наша Вселенная действительно является браной в многомерном балке. Эти попытки явственно приводили к выводу, что все известные людям частицы, все силы и все поля привязаны к нашей бране. За единственным исключением – за исключением гравитации и связанных с ней искривлений пространства – времени.
Возможно, существуют другие виды материи, и полей и сил, которые обладают четырьмя измерениями и существуют в балке. Но даже если они есть, их природа нам неведома. Мы можем строить домыслы, и порой именно этим физики и занимаются. Однако у нас нет данных наблюдений и экспериментов, которые могли бы послужить нам путеводной звездой. Подобные домыслы, выраженные языком формул, мы встречаем в «Интерстеллар» на досках в кабинете профессора Брэнда (см. главу 25).
Есть разумное, но лишь частично обоснованное предположение, гласящее, что если многомерные силы, поля и частицы существуют, мы никогда не сможем их почувствовать или увидеть. Когда сущность из балка пройдет сквозь нашу брану, мы не увидим, из чего она состоит. Сечения сущности из балка будут «прозрачны».
Но, с другой стороны, мы зафиксируем гравитацию сущности и порождаемые этой гравитацией искривления пространства – времени. Например, если в моем желудке появится гиперсферическая сущность из балка, обладающая достаточно сильным гравитационным притяжением, мышцы начнут сопротивляться этому притяжению, влекущему их к центру сферического сечения сущности из балка, и у меня скрутит живот. А если сечение сущности из балка появится на фоне разноцветной стены, искривление пространства может линзировать цветные клетки, как на рис. 22.4 (сверху).
Рис. 22.4. Сущность из балка, проходя сквозь нашу брану, искажает воспринимаемое нами изображение разноцветной стены
Если же сущность из балка будет вращаться, она может вовлечь пространство в вихревое движение, которое я смогу ощущать и видеть; см. рис. 22.4 снизу.
Сущности из балка в «Интерстеллар»
Все персонажи фильма уверены в, извините за тавтологию, существовании сущностей из балка, хоть и редко называют их так. Обычно персонажи говорят о сущностях из балка: «Они» – благоговейно, с большой буквы. Амелия Брэнд говорит Куперу: «Кем бы Они ни были, похоже, что Они заботятся о нас. Червоточина позволяет нам путешествовать к другим звездам, и появилась она в точности тогда, когда это нам понадобилось».
Одна из захватывающих идей, которую Кристофер Нолан заронил в умы зрителей: возможно, в действительности Они – это наши потомки, люди, которые в далеком будущем эволюционировали, обретя дополнительное измерение и перейдя в балк. В конце фильма Купер говорит ТАРСу: «Ты еще не понял, ТАРС? Они – это мы, и стараются помочь, так же как я старался помочь Мёрф». ТАРС отвечает: «Люди не могли создать тессеракт [по которому перемещается Купер, см. главу 29. – К. Т.]» «Пока нет, – отвечает Купер, – но однажды… Не мы, но люди, эволюционировавшие, вышедшие за пределы известных нам четырех измерений».
Купер, Брэнд и остальные члены экипажа «Эндюранс» никогда не ощущали и не видели действие гравитации наших потомков из балка или вызванные ею искривления и завихрения пространства. (Это, пожалуй, хорошая тема для продолжения фильма.) Однако Купер, перемещаясь через балк в тессеракте из главы 29, дотягивается до экипажа «Эндюранс» и до себя в прошлом через балк с помощью гравитации. Брэнд чувствует и видит его присутствие, и думает, что он – это Они.
23. Ограничение гравитации
Проблема гравитации в пяти измерениях
Если балк существует, его пространство должно быть искривленным. Не будь оно искривлено, гравитация подчинялась бы закону обратных кубов вместо закона обратных квадратов, и тогда Солнце не смогло бы удержать рядом свои планеты – они разлетелись бы в разные стороны.
Ладно-ладно, я не буду спешить и объясню подробнее. Вспомним (из главы 2), что силовые линии гравитационного поля Солнца (как и Земли и любых других сферических тел) устремлены к его центру и притягивают объекты к Солнцу в радиальном направлении (рис. 23.1). Сила гравитационного притяжения Солнца пропорциональна плотности силовых линий (количеству линий, проходящих через заданную площадь). А поскольку поверхности вложенных одна в другую сфер, через которые проходят линии, имеют два измерения, плотность линий уменьшается с увеличением радиуса сферы r как 1/r2, и так же уменьшается сила гравитации. Это ньютоновский закон обратных квадратов для гравитации.
Рис. 23.1. Силовые линии гравитационного поля вокруг Солнца
Теория струн утверждает, что в балке гравитация тоже описывается силовыми линиями. Если пространство балка не искривлено, то силовые линии гравитационного поля Солнца будут радиально распространяться наружу, в балк (рис. 23.2). Поскольку балк обладает дополнительным измерением (в «Интерстеллар» всего одним), есть не два, а три перпендикулярных измерения, в которых гравитация может распространяться. Следовательно, если балк существует и не искривлен, плотность силовых линий, а значит, и сила гравитации должны при удалении от Солнца уменьшаться как 1/r3, а не как 1/r2[68]. Солнечное притяжение, действующее на Землю, будет в 200 раз слабее, а действующее на Сатурн – в 2000 раз слабее. Этак Солнце не сможет удержать планеты рядом с собой, и они улетят прочь, в межзвездное пространство.
Рис. 23.2. Силовые линии гравитационного поля распространяются в балке радиально, если балк не искривлен. Пунктирные окружности изображены здесь лишь для наглядности (Перерисовка с иллюстрации из книги Лизы Рэндалл «Закрученные пассажи: Проникая в тайны скрытых размерностей пространства» [Рэндалл 2011].)